Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Magnus G. Johnston and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland

Correspondence e-mail:
w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{Co}-\mathrm{O})=0.002 \AA$
R factor $=0.022$
$w R$ factor $=0.062$
Data-to-parameter ratio $=27.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Cobalt hydrogen selenite chloride dihydrate, $\mathrm{Co}\left(\mathrm{HSeO}_{3}\right) \mathrm{Cl} \cdot \mathbf{2 H} \mathbf{H}_{2} \mathrm{O}$

Cobalt hydrogen selenite chloride dihydrate, $\mathrm{Co}\left(\mathrm{HSeO}_{3}\right) \mathrm{Cl} \cdot-$ $2 \mathrm{H}_{2} \mathrm{O}$, is built up from a network of trans $\mathrm{CoO}_{4} \mathrm{Cl}_{2}$ octahedra, cis $\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}$ octahedra and HSeO_{3} pyramids. These units $\left[d_{\mathrm{av}}(\mathrm{Co}-\mathrm{O})=2.075(2) \AA, d_{\mathrm{av}}(\mathrm{Co}-\mathrm{Cl})=2.5370(6) \AA\right.$ and $d_{\mathrm{av}}(\mathrm{Se}-\mathrm{O})=1.703(2) \AA$] share vertices by way of $\mathrm{Co}-\mathrm{O}-$ Se and $\mathrm{Co}-\mathrm{Cl}-\mathrm{Co}$ bonds to produce a three-dimensional structure. Co of the trans octahedron occupies an inversion centre; Co of the cis octahedron and two attached water O atoms lie on a mirror plane. The hydrogen-bonding scheme has been elucidated and involves $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ interactions. The title compound is isostructural with $\mathrm{Cu}\left(\mathrm{HSeO}_{3}\right) \mathrm{Cl} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, although the metal polyhedra are distinctly different in the two phases.

Comment

The title compound represents another example of a hydrogen selenite chloride hydrate, complementing $\mathrm{Co}\left(\mathrm{HSeO}_{3}\right)$ $\mathrm{Cl} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Cu}\left(\mathrm{HSeO}_{3}\right) \mathrm{Cl} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Johnston \& Harrison, 2000). $\mathrm{Co}\left(\mathrm{HSeO}_{3}\right) \mathrm{Cl} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Figs. 1 and 2) is essentially isostructural with $\mathrm{Cu}\left(\mathrm{HSeO}_{3}\right) \mathrm{Cl} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, although the metal coordinations are distinctly different in the two phases.

Co1 (site symmetry $\overline{1}$) has elongated octahedral coordination to four O and two Cl atoms. The cis bond angles lie between 88.09 (4) and 91.91 (4) ${ }^{\circ}$. The O atoms form bridges to adjacent Se atoms $\left[\theta_{\mathrm{av}}(\mathrm{Co}-\mathrm{O}-\mathrm{Se})=119.8(8)^{\circ}\right]$ and the Cl atoms link to Co 2 cations. The average $\mathrm{Co} 1-\mathrm{O}$ distance of 2.049 (2) \AA and the $\mathrm{Co} 1-\mathrm{Cl}$ separation of 2.5989 (6) \AA correlate reasonably well with ionic radius (IR) sums for the species involved $\left[d_{\mathrm{IR}}(\mathrm{Co}-\mathrm{O})=2.09 \AA\right.$ and $d_{\mathrm{IR}}(\mathrm{Co}-\mathrm{Cl})=$ $2.56 \AA$], assuming the presence of high-spin Co^{2+} (Shannon, 1976). In $\mathrm{Cu}\left(\mathrm{HSeO}_{3}\right) \mathrm{Cl} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Johnston \& Harrison, 2000), the distinction between the equatorial $\mathrm{Cu}-\mathrm{O}$ bonds $\left[d_{\mathrm{av}}=\right.$

Figure 1

Fragment of $\mathrm{Co}\left(\mathrm{HSeO}_{3}\right) \mathrm{Cl} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (50% displacement ellipsoids; arbitrary spheres for the H atoms). Symmetry codes: (i) $\frac{1}{2}+x, y, \frac{1}{2}-z$; (ii) $\frac{1}{2}-x$, $-y, \frac{1}{2}+z$; (iii) $1-x,-y, 1-z$; (iv) $x, \frac{1}{2}-y, z$.

Received 11 March 2003 Accepted 18 March 2003 Online 31 March 2003

Figure 2
Polyhedral representation of $\mathrm{Co}\left(\mathrm{HSeO}_{3}\right) \mathrm{Cl} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, viewed approximately normal to (001). Colour key: $\mathrm{Co}_{1} \mathrm{O}_{4} \mathrm{Cl}_{2}$ octahedra purple, $\mathrm{Co} 2\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}$ octahedra blue, $\mathrm{HSeO}_{3} E$ ($E=$ dummy atom representing the lone pair of electrons placed $1.0 \AA$ from Se) pseudo-tetrahedra yellow. The coloured spheres (radii arbitrary) represent O atoms (red), Cl atoms (green), and H atoms (grey).

Figure 3
Polyhedral representation of a sheet of Co 1 and Se centred groups in $\mathrm{Co}\left(\mathrm{HSeO}_{3}\right) \mathrm{Cl} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, viewed down [010] $(-0.20<y<0.20)$, showing the squashed eight-ring voids bridged by pairs of hydrogen bonds $(\mathrm{H} \cdots \mathrm{O}$ portion coloured red). Otherwise, the colour key is as in Fig. 2.
1.976 (2) $\AA]$ and apical $\mathrm{Cu}-\mathrm{Cl}[d=2.8066(5) \AA]$ bonds is more extreme, and can be ascribed to a typical Jahn-Teller distortion for the $d^{9} \mathrm{Cu}^{2+}$ ion.

The pyramidal geometry of the $\left[\mathrm{HSeO}_{3}\right]^{-}$moiety and the lengthened protonated $\mathrm{Se}-\mathrm{O} 3 \mathrm{H}$ bond in the title compound are typical for the hydrogen selenite group (Verma, 1999). The unobserved $\mathrm{Se}^{\mathrm{IV}}$ lone pair of electrons is presumed to occupy the fourth vertex of a tetrahedron and, as such, is directed into empty space at an angle of about 35° with respect to a projection of the $\mathrm{Se}-E(E=$ lone pair $)$ vector on to (010). The Co 1 and Se polyhedra form $\left[\mathrm{Co}\left(\mathrm{HSeO}_{3}\right)_{2} \mathrm{Cl}_{2}\right]^{2-}$ layers which

Figure 4

Section of $\mathrm{Co}\left(\mathrm{HSeO}_{3}\right) \mathrm{Cl} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (50% displacement ellipsoids; arbitrary spheres for the H atoms), showing the hydrogen bonds (dashed lines) associated with the water molecules bonded to Co 2 . Atom H 1 has been omitted for clarity and the symmetry codes are as in Table 2.
propagate in the (010) plane. These layers encapsulate polyhedral eight-rings (Fig. 3), each of which is stabilized by a pair of intra-sheet $\mathrm{Se}-\mathrm{O} 3-\mathrm{H} 1 \cdots \mathrm{O} 1$ hydrogen bonds.

The four O and two Cl atoms around Co 2 (site symmetry m) form a distorted cis $\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}$ octahedron $\left[d_{\mathrm{av}}(\mathrm{Co}-\mathrm{O})=\right.$ 2.100 (3) \AA A . The cis and trans bond angles lie in the ranges 87.04 (8)-92.68 (7) and 173.00 (12)-179.19 (6) $)^{\circ}$, respectively. The $\left[\mathrm{Co} 2\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right]$ octahedra are isolated from each other, and bridge the $(010)\left[\mathrm{Co}\left(\mathrm{HSeO}_{3}\right)_{2} \mathrm{Cl}_{2}\right]^{2-}$ sheets via $\mathrm{Co} 1-$ $\mathrm{Cl} 1-\mathrm{Co} 2-\mathrm{Cl} 1-\mathrm{Co} 1$ bonds to produce a three-dimensional structure. The hydrogen bonds (Table 2 and Fig. 4) associated with the Co 2 -polyhedron water molecules include $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ links. In $\mathrm{Cu}\left(\mathrm{HSeO}_{3}\right) \mathrm{Cl} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, a Jahn-Teller distortion led to long bonds to two of the trans water-molecule O atoms $[2.229$ (3) and $2.634(5) \AA$, two short symmetryequivalent $\mathrm{Cu}-\mathrm{OH}_{2}$ links $[2.0244(16) \AA$] and a short $\mathrm{Cu}-\mathrm{Cl}$ bond $[d=2.3127(5) \AA]$.

Experimental

A mixture of $7 \mathrm{ml} 0.5 \mathrm{M}{ }^{\prime} \mathrm{H}_{2} \mathrm{SeO}_{3}$ ' solution (dissolved SeO_{2}), 8 ml 1 M LiCl solution and $0.714 \mathrm{~g}(3 \mathrm{mmol}) \mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ were sealed in a 23 ml capacity Teflon-lined hydrothermal bomb, and heated to 473 K for 6 d . After cooling over a few hours and opening the bomb, there was no solid product. The resultant red liquor was placed in a Petri dish and, after 10 d , purple chunky crystals of the title compound were recovered by vacuum filtration. These were not rinsed, as the crystals redissolve very easily. $\mathrm{Co}\left(\mathrm{HSeO}_{3}\right) \mathrm{Cl} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ crystals appear to be stable when stored in a dry atmosphere.

Crystal data

$\mathrm{Co}\left(\mathrm{HSeO}_{3}\right) \mathrm{Cl} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=258.38$
Orthorhombic, Pnma
$a=9.3384$ (4) \AA
$b=17.3447$ (7) \AA
$c=7.3198(3) \AA$ 。
$V=1185.60(9) \AA^{3}$
$Z=8$
$D_{x}=2.895 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation

Cell parameters from 5736 reflections
$\theta=3.5-32.5^{\circ}$
$\mu=9.42 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Chunk, purple
$0.35 \times 0.16 \times 0.08 \mathrm{~mm}$

inorganic papers

Data collection

Bruker SMART1000 CCD	2199 independent reflections
diffractometer	1923 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.025$
Absorption correction: multi-scan	$\theta_{\max }=32.5^{\circ}$
$\quad(S A D A B S ;$ Bruker, 1999$)$	$h=-13 \rightarrow 14$
$T_{\min }=0.137, T_{\max }=0.519$	$k=-22 \rightarrow 26$
11031 measured reflections	$l=-9 \rightarrow 11$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.022$
$w R\left(F^{2}\right)=0.062$
$S=1.02$
2199 reflections
80 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0396 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.92 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.94 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0007 (2)

Table 1
Selected geometric parameters ($\AA{ }^{\circ},{ }^{\circ}$).

$\mathrm{Co} 1-\mathrm{O} 1^{\mathrm{i}}$	$2.0403(14)$	$\mathrm{Co} 2-\mathrm{O} 5$	$2.155(3)$
$\mathrm{Co} 1-\mathrm{O} 2$	$2.0578(14)$	$\mathrm{Co} 2-\mathrm{Cl} 1$	$2.4751(6)$
$\mathrm{Co} 1-\mathrm{Cl} 1$	$2.5989(6)$	$\mathrm{Se} 1-\mathrm{O} 2$	$1.6779(15)$
$\mathrm{Co} 2-\mathrm{O} 6$	$2.0809(17)$	$\mathrm{Se} 1-\mathrm{O} 1$	$1.6851(14)$
$\mathrm{Co} 2-\mathrm{O} 4$	$2.083(2)$	$\mathrm{Se} 1-\mathrm{O} 3$	$1.7530(15)$
$\mathrm{Cl}^{\mathrm{ii}}-\mathrm{Co} 2-\mathrm{Cl} 1$	$90.13(3)$	$\mathrm{Se} 1-\mathrm{O} 1-\mathrm{Co1}{ }^{\text {iii }}$	$116.90(8)$
$\mathrm{Co} 2-\mathrm{Cl} 1-\mathrm{Co} 1$	$129.26(2)$	$\mathrm{Se} 1-\mathrm{O} 2-\mathrm{Co} 1$	$122.75(8)$

Symmetry codes: (i) $\frac{1}{2}-x,-y, \frac{1}{2}+z$; (ii) $x, \frac{1}{2}-y, z$; (iii) $\frac{1}{2}-x,-y, z-\frac{1}{2}$.

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 1 \cdots \mathrm{O} 1^{\text {i }}$	0.90	1.74	2.641 (2)	173
$\mathrm{O} 4-\mathrm{H} 2 \cdots \mathrm{O}^{\text {ii }}$	0.85	2.00	2.8123 (18)	159
O5-H3 . . $\mathrm{Cl}^{\text {iiii }}$	0.82	2.73	3.387 (2)	138
$\mathrm{O} 6-\mathrm{H} 4 \cdots \mathrm{O}$	0.82	1.93	2.750 (2)	175
$\mathrm{O} 6-\mathrm{H} 5 \cdots \mathrm{Cl} 1^{\text {iv }}$	0.88	2.50	3.3741 (18)	177

Symmetry codes: (i) $-x,-y, 1-z$; (ii) $\frac{1}{2}-x, \frac{1}{2}+y, z-\frac{1}{2}$; (iii) $x-\frac{1}{2}, y, \frac{3}{2}-z$; (iv) $x-\frac{1}{2}, y, \frac{1}{2}-z$.

The H atoms were located from difference maps and refined by riding in their as-found positions.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXS97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and ATOMS (Shape Software, 1999); software used to prepare material for publication: SHELXL97.

References

Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Johnston, M. G. \& Harrison, W. T. A. (2000). Z. Anorg. Allg. Chem. 626, 24872490.

Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Shape Software (1999). ATOMS. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Verma, V. P. (1999). Thermochim. Acta, 327, 63-102.

